Looking back into 10-12 billion years of cosmic history this Colloquium paper summarizes what is presently known about the proton-to-electron mass ratio and its variation with time. The hydrogen spectra of quasars and how they reveal fundamental information on some of the most important constants in physics and cosmology are reviewed.

[Rev. Mod. Phys. 88, 021003] Published Wed May 04, 2016

]]>Epigenetics is essential in understanding the development, from a common undifferentiated cell, of different cell types that share the same hereditary materials in their genome. A meaningful decoration of chemical marks on chromosomes selects the genes to be expressed by directing the differential folding of the genome in the cell nucleus. This article surveys plausible physical mechanisms involved in setting up epigenetic marks and their role in genome folding and expression.

[Rev. Mod. Phys. 88, 025002] Published Tue Apr 26, 2016

]]>An ongoing theme in quantum physics is the interaction of small quantum systems with an environment. If that environment has many degrees of freedom and is weakly coupled, it can often be reasonable to treat its decohering effect on the small system using a “memoryless,” or Markovian description. This Colloquium shows that for many phenomena a more refined, non-Markovian, treatment is necessary. The suite of developing theoretical tools is reviewed, with which recent progress on this problem has been based.

[Rev. Mod. Phys. 88, 021002] Published Tue Apr 19, 2016

]]>How are two essential quantities of neutron stars (the mass and radius), which provide constraints for the equation of state in their interiors where supranuclear densities are experienced, precisely determined? This Colloquium discusses major techniques for how this information can be inferred from x-ray observations of neutron stars that accrete matter from a binary companion, or of isolated neutron stars that experience seismic vibrations, taking into account rotation, relativistic effects, and magnetic fields.

[Rev. Mod. Phys. 88, 021001] Published Wed Apr 13, 2016

]]>This review addresses the current theoretical understanding of hadronic matter at large magnetic fields. Applications include heavy-ion collisions, neutron stars, and the early Universe. Models used describe the thermodynamic properties and phases of quantum chromodynamics as functions of temperature and magnetic field strength. These models are examined and directions for future research are pointed out.

[Rev. Mod. Phys. 88, 025001] Published Fri Apr 08, 2016

]]>In magnetic fusion reactors relying on the burning of deuterium and tritium, sufficient confinement of the alpha particles produced in the nuclear reactions is crucial to sustaining the burning plasma. In this article the interactions of these energetic particles with linear and nonlinear Alfve’n waves generated in the magnetized plasma are reviewed.

[Rev. Mod. Phys. 88, 015008] Published Wed Mar 23, 2016

]]>The advent of x-ray free electron lasers has made possible the study of matter at the characteristic space and time scales of atomic and molecular phenomena using intense coherent x-ray pulses. This article describes the physical principles and the theoretical models governing the interaction of charged particles, electromagnetic waves, and external magnetic fields that comprise the x-ray free-electron lasers. It also includes a discussion of existing facilities and avenues for increasing the peak power and improving the control of spectral and coherence properties to allow the exploration of an even larger range of phenomena.

[Rev. Mod. Phys. 88, 015006] Published Wed Mar 09, 2016

]]>In the five years since achieving first light at the Linac Coherent Light Source, transformative studies have been conducted in a new regime with femtosecond pulses of short wavelength, high intensity x rays. This article summarizes these results in atomic, molecular and optical physics; condensed matter physics; matter in extreme density, temperature and pressure conditions; chemistry and soft matter; and biological structure and dynamics. In each of these areas, perspectives for future research are discussed.

[Rev. Mod. Phys. 88, 015007] Published Wed Mar 09, 2016

]]>Wave-particle duality lies at the root of quantum mechanics and is central in the description of interferences observed with elementary objects. In a delayed-choice experiment, the decision to observe the particle or wave character of a quantum system is delayed with respect to the time at which the system enters the interferometer. This paper reviews the history of the delayed-choice idea, introduced as a challenge to a realistic explanation of the wave-particle duality. It also describes recent experimental realizations of this idea and discusses intriguing extensions, such as the duality between separability and entanglement in multiple quantum systems.

[Rev. Mod. Phys. 88, 015005] Published Thu Mar 03, 2016

]]>How do we understand the production of the lightest nuclides from H to Li during the first seconds of cosmic time? This article reviews recent developments based on new precision cosmic microwave background measurements from the Planck satellite and observational abundance data. Utilizing updated input on nuclear reactions and the neutron lifetime as well as limits on the baryon density of the Universe obtained from Planck data leads to a number of neutrino flavors.

[Rev. Mod. Phys. 88, 015004] Published Tue Feb 23, 2016

]]>Besides being fundamental for life on Earth, water is one of the complex materials in nature. Due to the unusual properties of the hydrogen bonds water has a large number of phases as a function of temperature and pressure. Furthermore, the phase transitions between these different phases are still the object of much discussion. In this Colloquium the nature of these amazing properties of water is reviewed.

[Rev. Mod. Phys. 88, 011002] Published Wed Feb 17, 2016

]]>Methods of measuring the energies of jets have relied on detection of photons, charged hadrons, and neutral hadrons in a sampling calorimeter. However, the response for each particle is different, leading to poor jet energy resolution. Improved energy resolution for future studies of Higgs bosons and new particles decaying to jets requires improved energy resolution. The particle flow algorithm recognizes that charged particle momenta are better measured than their energies, so considerable improvement in energy resolution can be made using track momenta and substituting the energy deposited in the calorimeter. This article describes beam tests of the particle flow algorithm and the confrontation of data and simulations.

[Rev. Mod. Phys. 88, 015003] Published Mon Feb 08, 2016

]]>The quantum mechanics of black holes, and particularly the information paradox, have been a crucial arena for testing theories of quantum gravity. This review covers the quantum physics of black holes, anti-de Sitter/conformal field theory duality and holography, and the recent firewall paradox, with a focus on ideas from quantum information theory.

[Rev. Mod. Phys. 88, 015002] Published Tue Feb 02, 2016

]]>Physical phenomena at the nanoscale can be considerably different from the behavior in the macroscopic world. This rule is also true for plasmas at the nanoscale. This Colloquium discusses nanoplasmas from the experimental and theoretical point of view and shows that nanoplasmas can also have applications in certain technological areas.

[Rev. Mod. Phys. 88, 011001] Published Mon Jan 25, 2016

]]>Originally developed for quantum chromodynamics at strong coupling, lattice approximations provide an essential tool applicable to any strongly coupled gauge theory. The resolution of the lightweight Higgs puzzle may require new strongly coupled gauge theories at shorter distances. This review introduces the modern lattice tool kit as a combination of analytical and numerical techniques. Numerous applications to new physics with strong coupling gauge theories are presented, and results analyzed.

[Rev. Mod. Phys. 88, 015001] Published Tue Jan 19, 2016

]]>Experimental searches for new physics beyond the standard model of particle physics are not constrained to the high energy sector alone. This article shows examples on symmetry violations, possible breaking of time reversal and Lorentz invariance, from nuclear and neutron beta decay experiments and discusses how the accuracy of standard model parameters could be improved in the search for new physics.

[Rev. Mod. Phys. 87, 1483] Published Tue Dec 15, 2015

]]>How can the electric noise in the vicinity of a metallic body be measured and understood? Trapped ions, known as unique tools for metrology and quantum information processing, also constitute very sensitive probes of this electric noise for distances from micrometers to millimeters. This paper presents various models for the origin of the electric noise, provides a critical review of the experimental findings, and summarizes the important questions that are still open in this active research area.

[Rev. Mod. Phys. 87, 1419] Published Fri Dec 11, 2015

]]>A vision has formed in recent years of the components necessary for a large-scale quantum network. Single trapped atoms can serve as the nodes of this network, with the links established by flying photons that are coupled to the atoms using optical resonators. This review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.

[Rev. Mod. Phys. 87, 1379] Published Tue Dec 01, 2015

]]>The occurrence of high-temperature ferromagnetism in transition metal semiconductors holds promise for devices with spintronic functionalities. This review focuses on transition metal aggregation process, which leads to random patterns of high-temperature material doped beyond the solubility limit. A computational description of nanodecomposition and the relevant experimental results are presented for a range of semiconductor compounds. The correlation of high-temperature ferromagnetism with spinodal nanodecomposition points to promising nanotechnology utilizing materials with transition metal rich nanoclusters coherently embedded within semiconducting hosts.

[Rev. Mod. Phys. 87, 1311] Published Thu Nov 19, 2015

]]>How can information from communication and social networks in modern societies be processed, classified, and retrieved? For this new mathematical methods have to be invented for a precise characterization of the existing networks and their search engines. This article describes the properties of the Google matrix and its efficiency in analyzing directed networks by way of several examples like the World Wide Web, Wikipedia, world trade, social and citation networks, DNA sequences and Ulam networks, and others. The underlying analytical and numerical tools used thereby originate from fields like quantum chaos and random matrix theory.

[Rev. Mod. Phys. 87, 1261] Published Mon Nov 02, 2015

]]>In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.

[Rev. Mod. Phys. 87, 1213] Published Tue Oct 27, 2015

]]>The 2014 Nobel Prize for Chemistry was shared by Eric Betzig, Stefen W. Hell, and William E. Moerner. These papers are the text of the address given in conjunction with the award.

[Rev. Mod. Phys. 87, 1153] Published Wed Oct 21, 2015

]]>The 2014 Nobel Prize for Chemistry was shared by Eric Betzig, Stefen W. Hell, and William E. Moerner. These papers are the text of the address given in conjunction with the award.

[Rev. Mod. Phys. 87, 1169] Published Wed Oct 21, 2015

]]>The 2014 Nobel Prize for Chemistry was shared by Eric Betzig, Stefen W. Hell, and William E. Moerner. These papers are the text of the address given in conjunction with the award.

[Rev. Mod. Phys. 87, 1183] Published Wed Oct 21, 2015

]]>[Rev. Mod. Phys. 87, 1119] Published Mon Oct 05, 2015

]]>This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid to late 1980s. The background …

[Rev. Mod. Phys. 87, 1133] Published Mon Oct 05, 2015

]]>[Rev. Mod. Phys. 87, 1139] Published Mon Oct 05, 2015

]]>Quantum Monte Carlo techniques aim at providing a description of complex quantum systems such as nuclei and nucleonic matter from first principles, i.e., realistic nuclear interactions and currents. The methods are similar to those used for many-electron systems in quantum chemistry and condensed matter physics, but are extended to include spin-isospin, tensor, spin-orbit, and three-body interactions. This review shows how to build the atomic nucleus from the ground up. Examples include the structure of light nuclei, electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter.

[Rev. Mod. Phys. 87, 1067] Published Wed Sep 09, 2015

]]>Random-matrix theory has a long history of applications, from nuclear physics to electron localization to quantum dots. This review discusses yet another application of this very versatile framework: topological superconductors. An introduction to the basic concepts is followed by a discussion of transport properties that are susceptible to the predicted existence of Majorana excitations in these exotic materials.

[Rev. Mod. Phys. 87, 1037] Published Thu Sep 03, 2015

]]>Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

[Rev. Mod. Phys. 87, 925] Published Mon Aug 31, 2015

]]>Surface nanobubbles are nanoscopic gaseous domains on immersed substrates which can survive for days. They were first speculated to exist about 20 years ago, based on stepwise features in force curves between two hydrophobic surfaces, eventually leading to the first atomic force microscopy (AFM) ima…

[Rev. Mod. Phys. 87, 981] Published Mon Aug 31, 2015

]]>Density functional theory has been spectacularly successful in physics, chemistry, and related fields, and it keeps finding new applications. This paper gives an overview of the history of the method and its many applications since it gained wide acceptance, as well as a discussion of its likely future.

[Rev. Mod. Phys. 87, 897] Published Tue Aug 25, 2015

]]>In contrast to conventional BCS superconductors, the observation that superconductivity in unconventional high-temperature materials appears in close proximity to a static antiferromagnetic phase suggests that magnetism plays a fundamental role in the microscopic origins of superconductivity. This review provides an overview of how elastic and inelastic neutron scattering is used to determine the magnetic structures and the doping evolution of spin excitations in iron-based superconductors. The interplay between magnetism and superconductivity is contrasted with related behavior in the copper oxide and heavy fermion superconductors and is important to future theoretical efforts.

[Rev. Mod. Phys. 87, 855] Published Thu Aug 20, 2015

]]>The aim of this review, based on Anderson’s ideas on phase slippage in superfluid helium, is to convey a physical meaning to the superfluid order parameter and its phase. This embraces an understanding of the superfluid order parameter phase and the associated processes that involve phase slip, the motion of vortices, critical velocities, Josephson effects, and phase slip associated with flow through small apertures. The review proceeds from a historical overview to a description of how the hydrodynamics of superfluid helium evolves from large to small scale, ultimately breaking down at close distance revealing the perplexingly elusive quantum properties of these fluids.

[Rev. Mod. Phys. 87, 803] Published Mon Aug 17, 2015

]]>Recent advances in ultrafast laser spectroscopy have made it possible to study the electron dynamics for physical and chemical processes at the atomic level in real time. This article reviews the concepts and techniques that are necessary to understand and interpret these experiments with the focus on time-resolved photoemission.

[Rev. Mod. Phys. 87, 765] Published Wed Aug 12, 2015

]]>Carbon nanotubes with multifunctional capabilities are prime candidates for quantum wires for use in a variety of novel electronic devices. Unlike conventional semiconductor nanowires, electrons confined to nanotubes have two angular momentum quantum numbers from spin and valley degrees of freedom. This review describes the energy levels associated with the interplay of each of these degrees of freedom and how the spin-orbit interaction affects electronic transport through single and multiple quantum dots created by external field gating. The emphasis on experimental evidence provides essential concepts which are placed into context with recent theoretical advances such as on electron-electron interactions in one dimension.

[Rev. Mod. Phys. 87, 703] Published Tue Jul 28, 2015

]]>Since 1967 the primary time standard is the cesium atomic clock, based on a hyperfine transition in the microwave domain. The development of ultrastable laser sources now allows one to operate on electronic transitions in the optical domain, corresponding to a 5-order-of-magnitude increase in the clock frequency. This article reviews the spectacular accuracy and stability gains that can be obtained when working with laser cooled ions or neutral atoms. It also discusses some important applications of these optical clocks, from geodesy to tests of fundamental theories to many-body physics.

[Rev. Mod. Phys. 87, 637] Published Fri Jun 26, 2015

]]>The statistical mechanics of systems out of equilibrium provides a formidable challenge. This review describes an approach to a subset of such problems, viz., stationary nonequilibrium states. The review includes what is known as the macroscopic fluctuation theory, which allows for the definition of nonequilibrium analogs of thermodynamics potentials, and is applied to various illustrative models.

[Rev. Mod. Phys. 87, 593] Published Wed Jun 24, 2015

]]>With the observation of neutrino masses and mixings, the study of their electromagnetic interactions has assumed greater relevance both as verification of the $\nu $ standard model, and as a guide to new physics. After a standard description of massive neutrinos, this review assembles the present state of the art in the study of their electromagnetic interactions. Possible measurements of their static properties as test of new physics are described, a well as their behavior in strong magnetic fields. As such it should be helpful to both particle physicists and astrophysicists.

[Rev. Mod. Phys. 87, 531] Published Tue Jun 16, 2015

]]>Lévy walks are random walks in which the distribution of step length does not decay exponentially and the velocity of the moving particle is finite. Building on earlier concepts, they reconcile anomalously fast diffusion with a finite propagation speed and have applications that range from basic statistical mechanics and transport theory to optics, cold atom dynamics, and biophysics. This review gives an introduction to this important class of models and discusses applications in both physics and biology.

[Rev. Mod. Phys. 87, 483] Published Tue Jun 09, 2015

]]>Understanding high temperature superconductors is a central problem in condensed matter physics. Many experiments have uncovered ordering tendencies which are responsible for the complex phase diagram of high temperature superconductors. This Colloquium discusses the interplay between different order parameters in these materials. Considering the intertwining of these orders leads to new experimentally observable consequences, shedding new light into the physics of these fascinating materials.

[Rev. Mod. Phys. 87, 457] Published Tue May 26, 2015

]]>Several years ago measurements at the Fermilab Tevatron proton-antiproton collider showed top quarks to be produced preferably in the proton direction and the antitop quarks in the antiproton direction. The size of such asymmetries was not expected in the standard model and this sparked intensive effort. This article reviews the current theoretical and experimental progress in understanding the asymmetries. The revised measurements and calculations are now in relatively good agreement. The LHC now produces large quantities of top quarks and can study related, but different, measures of asymmetric top quark production. The prospects for the LHC to extend our understanding and to probe for new physics beyond the standard model paradigm are also discussed.

[Rev. Mod. Phys. 87, 421] Published Mon May 18, 2015

]]>This Colloquium presents recent progress in understanding constraints and consequences of close-packing geometry of filamentous or columnar materials possessing nontrivial textures, focusing, in particular, on the common motifs of twisted and toroidal structures. The mathematical framework is presen…

[Rev. Mod. Phys. 87, 401] Published Thu May 14, 2015

]]>Quantum dots embedded in photonics nanostructures provide unprecedented control over the interaction between light and matter. This review gives an overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing.

[Rev. Mod. Phys. 87, 347] Published Mon May 11, 2015

]]>It may seem inevitable that highly entangled quantum states are susceptible to disturbance through interaction with a decohering environment. However, certain multiqubit entangled states are well protected from common forms of decoherence as the quantum information is hidden in inherently nonlocal degrees of freedom. This review shows that this robustness is enabled by specific measurements on subsets of qubits, implementing a quantum version of an error correction process. Beginning with the basics, the latest understanding of the relation between this form of error correction and the concept of two-dimensional topological order in many-body physics is reviewed.

[Rev. Mod. Phys. 87, 307] Published Tue Apr 07, 2015

]]>In recent years, there has been a wealth of new science involving low-energy antimatter (i.e., positrons and antiprotons) at energies ranging from ${10}^{2}$ to less than ${10}^{-3}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{eV}$. Much of this progress has been driven by the development of new plasma-based techniques to accumulate, manipulate, and deliver…

[Rev. Mod. Phys. 87, 247] Published Tue Mar 17, 2015

]]>The current status and open challenges of large ${N}_{c}$ QCD baryon spectroscopy are reviewed. After introducing the $1/{N}_{c}$ expansion method, the latest achievements for the ground state properties are revisited. Next the applicability of this method to excited states is presented using two different approa…

[Rev. Mod. Phys. 87, 211] Published Tue Mar 10, 2015

]]>The routine transformation of a liquid, as it is rapidly cooled, resulting in glass formation, is remarkably complex. A theoretical explanation of the dynamics associated with this process has remained one of the major unsolved problems in condensed matter physics. The random first order transition …

[Rev. Mod. Phys. 87, 183] Published Tue Mar 03, 2015

]]>Symmetry transformations have been proven a bedrock tool for understanding the nature of particle interactions, formulating, and testing fundamental theories. Based on the up to now unbroken $CPT$ symmetry, the violation of the $CP$ symmetry between matter and antimatter by weak interactions, discovered…

[Rev. Mod. Phys. 87, 165] Published Mon Feb 23, 2015

]]>Ettore Majorana (1906–1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year,…

[Rev. Mod. Phys. 87, 137] Published Wed Feb 11, 2015

]]>Mass spectrometry (MS) is widely regarded as the most sensitive and specific general purpose analytical technique. More than a century has passed for MS since the ground-breaking work of Nobel laureate Sir Joseph John Thomson in 1913. This Colloquium aims to (1) give an historical overview of the ma…

[Rev. Mod. Phys. 87, 113] Published Wed Jan 28, 2015

]]>This is a review on theoretical and experimental studies on dielectric microcavities, which play a significant role in fundamental and applied research. The basic concepts and theories are introduced. Experimental techniques for fabrication of microcavities and optical characterization are described…

[Rev. Mod. Phys. 87, 61] Published Thu Jan 22, 2015

]]>*Compass models* are theories of matter in which the couplings between the internal spin (or other relevant field) components are inherently spatially (typically, direction) dependent. A simple illustrative example is furnished by the *90° compass model* on a square lattice in which only couplings of th…

[Rev. Mod. Phys. 87, 1] Published Mon Jan 12, 2015

]]>[Rev. Mod. Phys. 86, 1453] Published Wed Dec 31, 2014

]]>The field of cavity optomechanics is reviewed. This field explores the interaction between electromagnetic radiation and nanomechanical or micromechanical motion. This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radi…

[Rev. Mod. Phys. 86, 1391] Published Tue Dec 30, 2014

]]>The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (…

[Rev. Mod. Phys. 86, 1337] Published Tue Dec 23, 2014

]]>This article reviews the role of hidden symmetries of dynamics in the study of physical systems, from the basic concepts of symmetries in phase space to the forefront of current research. Such symmetries emerge naturally in the description of physical systems as varied as nonrelativistic, relativist…

[Rev. Mod. Phys. 86, 1283] Published Mon Dec 22, 2014

]]>Recent years have witnessed a controversy over Heisenberg’s famous error-disturbance relation. Here the conflict is resolved by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. Two approaches to adapting the classic notion of root-mean-…

[Rev. Mod. Phys. 86, 1261] Published Thu Dec 18, 2014

]]>Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the pr…

[Rev. Mod. Phys. 86, 1203] Published Wed Dec 10, 2014

]]>Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable ra…

[Rev. Mod. Phys. 86, 1189] Published Mon Oct 13, 2014

]]>The fractional calculus has been part of the mathematics and science literature for 310 years. However, it is only in the past decade or so that it has drawn the attention of mainstream science as a way to describe the dynamics of complex phenomena with long-term memory, spatial heterogeneity, along…

[Rev. Mod. Phys. 86, 1169] Published Thu Oct 09, 2014

]]>[Rev. Mod. Phys. 86, 1187] Published Thu Oct 09, 2014

]]>Experimental investigations of spin-polarized electron confinement in nanostructures by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are reviewed. To appreciate the experimental results on the electronic level, the physical basis of STM is elucidated with special emp…

[Rev. Mod. Phys. 86, 1127] Published Fri Oct 03, 2014

]]>[Rev. Mod. Phys. 86, 1125] Published Mon Sep 22, 2014

]]>This Colloquium presents an overview of the research on nonlinear electromagnetic metamaterials. The developed theoretical approaches and experimental designs are summarized, along with a systematic description of various phenomena available with nonlinear metamaterials.

[Rev. Mod. Phys. 86, 1093] Published Fri Sep 12, 2014

]]>The hadronic final state in electron-proton collisions at HERA has provided a rich testing ground for development of the theory of the strong force, QCD. In this review, over 200 publications from the H1 and ZEUS Collaborations are summarized. Short distance physics, the measurement of processes at …

[Rev. Mod. Phys. 86, 1037] Published Fri Aug 22, 2014

]]>This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have…

[Rev. Mod. Phys. 86, 995] Published Thu Jul 24, 2014

]]>Spectroscopic studies of electronic phenomena in graphene are reviewed. A variety of methods and techniques are surveyed, from quasiparticle spectroscopies (tunneling, photoemission) to methods probing density and current response (infrared optics, Raman) to scanning probe nanoscopy and ultrafast pu…

[Rev. Mod. Phys. 86, 959] Published Wed Jul 23, 2014

]]>Biological locomotion, movement within environments through self-deformation, encompasses a range of time and length scales in an organism. These include the electrophysiology of the nervous system, the dynamics of muscle activation, the mechanics of the skeletal system, and the interaction mechanic…

[Rev. Mod. Phys. 86, 943] Published Thu Jul 17, 2014

]]>Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worl…

[Rev. Mod. Phys. 86, 897] Published Mon Jul 14, 2014

]]>Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general appli…

[Rev. Mod. Phys. 86, 855] Published Fri Jul 11, 2014

]]>[Rev. Mod. Phys. 86, 843] Published Thu Jul 03, 2014

]]>[Rev. Mod. Phys. 86, 851] Published Thu Jul 03, 2014

]]>[Rev. Mod. Phys. 86, 839] Published Mon Jun 30, 2014

]]>[Rev. Mod. Phys. 86, 841] Published Mon Jun 30, 2014

]]>The study of nonequilibrium phenomena in correlated lattice systems has developed into one of the most active and exciting branches of condensed matter physics. This research field provides rich new insights that could not be obtained from the study of equilibrium situations, and the theoretical und…

[Rev. Mod. Phys. 86, 779] Published Tue Jun 24, 2014

]]>Type-I clathrate compounds have attracted a great deal of interest in connection with the search for efficient thermoelectric materials. These compounds constitute networked cages consisting of nanoscale tetrakaidecahedrons (14-hedrons) and dodecahedrons (12-hedrons), in which the group-1 or -2 elem…

[Rev. Mod. Phys. 86, 669] Published Wed Jun 04, 2014

]]>Insects can hover, fly forward, climb, and descend with ease while demonstrating amazing stability, and they can also maneuver in impressive ways as no other organisms can. Is their flight inherently stable? If so, how can they maneuver so well? In recent years, significant progress has been made in…

[Rev. Mod. Phys. 86, 615] Published Fri May 16, 2014

]]>This review compares the conceptualization and practice of early real-space renormalization group methods with the conceptualization of more recent real-space transformations based on tensor networks. For specificity, it focuses upon two basic methods: the “potential-moving” approach most used in th…

[Rev. Mod. Phys. 86, 647] Published Fri May 16, 2014

]]>This article reviews experimental and theoretical work on Bose-Einstein condensation in quantum magnets. These magnets are natural realizations of gases of interacting bosons whose relevant parameters such as dimensionality, lattice geometry, amount of disorder, nature of the interactions, and parti…

[Rev. Mod. Phys. 86, 563] Published Thu May 15, 2014

]]>Inhomogeneous superconductors and inhomogeneous superfluids appear in a variety of contexts including quark matter at extreme densities, fermionic systems of cold atoms, type-II cuprates, and organic superconductors. In the present review the focus is on properties of quark matter at high baryonic d…

[Rev. Mod. Phys. 86, 509] Published Wed Apr 30, 2014

]]>The experimental searches for the standard model Higgs boson are reviewed from the 2 TeV run of the Tevatron with $\simeq 10\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\mathrm{fb}}^{-1}$ of recorded data, and from the 7 and 8 TeV runs of the LHC, with $\simeq 5$ and $\simeq 6\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\mathrm{fb}}^{-1}$, respectively, i.e., until the July 2012 discovery of a new particle by the LHC experiments. Th…

[Rev. Mod. Phys. 86, 479] Published Thu Apr 24, 2014

]]>Bell’s 1964 theorem, which states that the predictions of quantum theory cannot be accounted for by any local theory, represents one of the most profound developments in the foundations of physics. In the last two decades, Bell’s theorem has been a central theme of research from a variety of perspec…

[Rev. Mod. Phys. 86, 419] Published Fri Apr 18, 2014

]]>The efficiency of the future devices for quantum information processing is limited mostly by the finite decoherence rates of the individual qubits and quantum gates. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. Thi…

[Rev. Mod. Phys. 86, 361] Published Thu Apr 03, 2014

]]>Point defects and impurities strongly affect the physical properties of materials and have a decisive impact on their performance in applications. First-principles calculations have emerged as a powerful approach that complements experiments and can serve as a predictive tool in the identification a…

[Rev. Mod. Phys. 86, 253] Published Fri Mar 28, 2014

]]>Since its introduction 25 years ago, the quantum weak value has gradually transitioned from a theoretical curiosity to a practical laboratory tool. While its utility is apparent in the recent explosion of weak value experiments, its interpretation has historically been a subject of confusion. Here a…

[Rev. Mod. Phys. 86, 307] Published Fri Mar 28, 2014

]]>In this review the main advances in heavy-ion fusion research that have taken place over the last decade are addressed. During this period, experimental studies have been extended to deep sub-barrier energies to reveal the unexpected phenomenon of fusion hindrance. The coupled-channels descriptions …

[Rev. Mod. Phys. 86, 317] Published Fri Mar 28, 2014

]]>This review compiles results of experimental and theoretical studies on thin films and quantum structures of semiconductors with randomly distributed Mn ions, which exhibit spintronic functionalities associated with collective ferromagnetic spin ordering. Properties of $p$-type Mn-containing III-V as …

[Rev. Mod. Phys. 86, 187] Published Mon Mar 24, 2014

]]>Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Qua…

[Rev. Mod. Phys. 86, 153] Published Mon Mar 10, 2014

]]>Gravitational-wave detection has been pursued relentlessly for over 40 years. With the imminent operation of a new generation of laser interferometers, it is expected that detections will become a common occurrence. The research into more ambitious detectors promises to allow the field to move beyon…

[Rev. Mod. Phys. 86, 121] Published Fri Feb 21, 2014

]]>Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-…

[Rev. Mod. Phys. 86, 47] Published Tue Jan 14, 2014

]]>Disk galaxies evolve over time through processes that may rearrange both the radial mass profile and the metallicity distribution within the disk. This review of such slow changes is largely, though not entirely, restricted to internally driven processes that can be distinguished from evolution driv…

[Rev. Mod. Phys. 86, 1] Published Wed Jan 08, 2014

]]>In the quantum-Bayesian interpretation of quantum theory (or QBism), the Born rule cannot be interpreted as a rule for setting measurement-outcome probabilities from an *objective* quantum state. But if not, what is the role of the rule? In this paper, the argument is given that it should be seen as a…

[Rev. Mod. Phys. 85, 1693] Published Fri Dec 27, 2013

]]>This article reviews theoretical and experimental developments for one-dimensional Fermi gases. Specifically, the experimentally realized two-component delta-function interacting Fermi gas—the Gaudin-Yang model—and its generalizations to multicomponent Fermi systems with larger spin symmetries is di…

[Rev. Mod. Phys. 85, 1633] Published Wed Nov 27, 2013

]]>Positron annihilation spectroscopy is particularly suitable for studying vacancy-type defects in semiconductors. Combining state-of-the-art experimental and theoretical methods allows for detailed identification of the defects and their chemical surroundings. Also charge states and defect levels in …

[Rev. Mod. Phys. 85, 1583] Published Thu Nov 14, 2013

]]>Direct detection experiments, which are designed to detect the scattering of dark matter off nuclei in detectors, are a critical component in the search for the Universe’s missing matter. This Colloquium begins with a review of the physics of direct detection of dark matter, discussing the roles of …

[Rev. Mod. Phys. 85, 1561] Published Fri Nov 01, 2013

]]>This Colloquium reviews the studies of exotic type of low-energy nuclear fission, the $\beta $-delayed fission ($\beta \mathrm{DF}$). Emphasis is made on the new data from very neutron-deficient nuclei in the lead region, previously scarcely studied as far as fission is concerned. These data establish the new region of as…

[Rev. Mod. Phys. 85, 1541] Published Fri Oct 04, 2013

]]>The neutron-rich ${}^{6}\mathrm{He}$ and ${}^{8}\mathrm{He}$ isotopes exhibit an exotic nuclear structure that consists of a tightly bound ${}^{4}\mathrm{He}$-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare …

[Rev. Mod. Phys. 85, 1383] Published Wed Oct 02, 2013

]]>Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic messeng…

[Rev. Mod. Phys. 85, 1401] Published Wed Oct 02, 2013

]]>The control of electrons at the level of the elementary charge $e$ was demonstrated experimentally already in the 1980s. Ever since, the production of an electrical current $ef$, or its integer multiple, at a drive frequency $f$ has been a focus of research for metrological purposes. This review discusses…

[Rev. Mod. Phys. 85, 1421] Published Wed Oct 02, 2013

]]>